図形クイズ掲示板 クイズの投稿は自由です。どしどし参加してください。
ただしネタバレは禁止、ヒントまでにしてください。

[トップに戻る] [使いかた] [ワード検索] [過去ログ] [管理用] [注意事項]
名 前

題 名 解答用BBSはこちら
本 文
添付File
パスワード (英数字で8文字以内)    
No.613 Re:No.612  投稿者:FUKUCHAN 投稿日:2008/05/03(Sat) 17:02  
ワイヤフレーム表示にすると、中の正四面体や球の測定が可能になりました。
小生のは英語版なので(?)インチで表示され、しかも、かなり丸められた値となっています(たとえば、正四面体の1辺は10mmで作図しましたが、表示は3/8"=約10mm)。

日本語版ならmm表示?精度は限界有り???

No.612 早速ですので・・・  投稿者:FUKUCHAN 投稿日:2008/05/03(Sat) 16:48  

Download:612.skp 612.skp PDFで作成したのと同じ図形を、Google SketchUp 形式で作成しましたので、参考迄に投稿させて戴きます。
外形寸法は測定できるのですが、中の寸法はどうやって取れば良いのか、又は測定不可能なのか、まだ良く判っていません。

ご存知の方、アドヴァイスを!

また、作図段階で立方体を半透明指定しましたが、後からペンキバケツ(Paint Bucket)での変更はできないようです。これもまだ機能を理解していない為???(SketchUp Pro=有償でないと駄目?)

これもご存じの方、アドヴァイスを!(自分でもっと勉強せい!とのお叱りは勘弁して下さい)

しかし、ちゃんと読めるかなぁ?

No.611 いやもう感心しきり!  投稿者:moonlight 投稿日:2008/05/03(Sat) 10:49  
すごいなあ。pdf?というか擬似紙!
ワイヤーフレームも透過ワイヤーフレームも自在に選択できて
くるくる回せて・・・。
クラインの壺やメビウスの帯なんかおもちゃに良さそうですね。

例の問題は・・・異動があって思考停止中です。7角形も面白そうですね。考えてみないと・・・。

No.610 改造しました  投稿者:N/T 投稿日:2008/05/03(Sat) 08:11  
どちらの掲示板もSKPを投稿できるようにしました。
面白い作品を期待してます♪

No.607 RE:PDF  投稿者:FUKUCHAN 投稿日:2008/05/01(Thu) 22:16  
3D−PDFが当たり前(?)になりつつある今、同じようなフリーソフトである Google SketchUp データもアップ出来るようになりませんか?N/Tさん!

No.605でも発言しましたが、拡張子は skp です。

No.606 PDF  投稿者:N/T 投稿日:2008/04/29(Tue) 18:33  
なかなか上手く描けるもんですねぇ〜♪
表示方法もいろいろ有るし、部品毎に表示非表示も選択できるし。
なかなか高性能ですねぇ♪

No.605 RE:No.600 突拍子も有る!?!?  投稿者:FUKUCHAN 投稿日:2008/04/29(Tue) 13:29  
この図形を Google SketchUp で作成してみました。
小生の使っているのは英語版なので(日本語版も?)、寸法を入れるとインチ表示されました(メートル単位に変更出来るのかな?)。
内部の寸法が測定出来るか、まだ SketchUp の機能を十分に理解していませんが、こちらも面白いので参考迄。

と言って掲載しようとしたら、*.skp 形式は駄目でした。

No.603 ちょっと虚を突かれる問題  投稿者:FUKUCHAN 投稿日:2008/04/29(Tue) 13:24  
また酒転童子さんの部屋を覗いてみました。

http://www.k3.dion.ne.jp/~edo-cad/sei_7_kakukei_de_asondeite.html

一瞬「なぬっ?」と思いましたが、面白いので勝手に出題させて頂きました。
酒転童子さん、ごめんなさい m(_._)m

図の描き方で、ちょっと道に迷う典型例かな?
ヒントを出すと易し過ぎるので、それは解答用BBSに掲載しました。

No.601 RE:突拍子も有る!?!?  投稿者:FUKUCHAN 投稿日:2008/04/28(Mon) 18:51  
3D−PDFを使ったのが「ミソ」なだけで、普通の問題ですけど...
No.600 突拍子も有る!?!?  投稿者:FUKUCHAN 投稿日:2008/04/28(Mon) 18:49  

Download:600.pdf 600.pdf 幾つか考えてみても、複雑過ぎたり、突拍子もなく無かったりして難しいですねぇ。

そこで、普通の問題を3D−PDFを使って作ってみました。
立方体の1辺の長さは10、その中にある赤い(探し出して下さい)球の半径は1で、この4つは互いに接しています(外接)。・・・この寸法は有償のアクロバットを使うと、PDFに埋め込む事が出来るそうです!

さらに、この立方体には正四面体の空洞があり、4球はその面に接しており、
4球の中心と立方体の中心は同じ位置にあります(同じ位置にある事は、出題とは直接関係ありませんが...)。
また、PDFを良く見ると、4球に接している(外接)小さな球があります。

そこで問題ですが、@正四面体の1辺長さは? A小さな球の半径(直径)は?

No.599 アリャリャ!  投稿者:FUKUCHAN 投稿日:2008/04/26(Sat) 20:28  
突拍子もない図形を作る前に、突拍子もないページ紹介が...
No.597 RE:寸法まで  投稿者:N/T 投稿日:2008/04/23(Wed) 07:03  
> 突拍子もない図形を作ってみたいですね♪

楽しみにしてます。

No.596 RE:寸法まで  投稿者:FUKUCHAN 投稿日:2008/04/22(Tue) 21:15  
Acrobat 3D で検索すると出てきますが、これで作成したPDFファイルを開くと、3Dものさしと言うツールが出ます(アドビーの説明では、作成者がこの許可を与えないと駄目で、小生のソフトでは指定出来ません)。
このツールを使うと距離とか半径とか面積とかが判るようです。

次回は無料お試し版で(フル機能30日らしい)何か作成してみます。
でも詳しい3Dデータは、版権の問題で発表できないので、突拍子もない図形を作ってみたいですね♪

No.595 寸法まで  投稿者:N/T 投稿日:2008/04/21(Mon) 07:00  
入るのなら用途は広いですねぇ〜♪
No.594 RE:3D-PDF  投稿者:FUKUCHAN 投稿日:2008/04/20(Sun) 10:24  
最近徐々に見かけるようになりましたね。
きちんとした(?)PDF作成ソフトを使うと、寸法なども伝えられるらしいですけど...高いです!

No.593 3D−PDF  投稿者:N/T 投稿日:2008/04/20(Sun) 08:35  
これ、面白いですね。
知らなかったです。

No.592 RE:描けるでしょうか?  投稿者:FUKUCHAN 投稿日:2008/04/19(Sat) 21:07  

Download:592.pdf 592.pdf 3Dでヘンテコ4角柱を作りました。
上下の面がその答えの形をしていますので、参考として下さい。

3D−PDFですので、フリーソフトのアクロバットリーダーで読めますよ!

うまく読めると良いのですが...

No.591 描けるでしょうか?  投稿者:FUKUCHAN 投稿日:2008/04/19(Sat) 19:00  

moonlightさんの問題を少し変形してみました。
添付図の四辺形ABCDにおいて、AB=7、BC=5、CD=6で、対角線ACとBDの長さは等しくなっています。
更に、DAの中点Mを通り、BCに垂直な線を描きます。
対角線ACとBDの交点をPとした時、点Pが上記の垂直な線と重なる図は、定規とコンパスで描けますか?

2つ描けると思いますが...

No.590 図形クイズでは無いのですが...  投稿者:FUKUCHAN 投稿日:2008/04/19(Sat) 17:33  
久しぶりに酒転童子さんの部屋を覗き、ピタゴラス数の表を見ました。
3:4:5は良く知られていますが、その他のピタゴラス数って、なぜ二等辺三角形に近いものが多いんだろう?

5:12:13とか、7:24:25とか...
その他でも図形を描くと二等辺三角形に近くなりますし...

まぁ、無限に存在するはずなので、必ずしも大半を占めるとは言えないでしょうが、何か説明は出来るのでしょうか?

No.585 私的数学塾」  投稿者:N/T 投稿日:2008/03/03(Mon) 18:49  
クイズのページも面白いです。
あっという間に時間が・・・

No.584 畑が同じでも  投稿者:moonlight 投稿日:2008/03/03(Mon) 14:55  
殆ど紹介されないし知らないようです。
これほどネットが広がり便利なのに勿体無いことですね。

とはいえ,これほどのところは他にはあまり知りません。
日本の「私的数学塾」の私の備忘録の幾何学分野の「基本の作図」
なんかは面白いです。
http://www004.upp.so-net.ne.jp/s_honma/

No.583 Re:No.581 速いですね  投稿者:FUKUCHAN 投稿日:2008/03/03(Mon) 13:23  
>既にご存知だったのでしょうか。

いえいえ、Antonio Gutierrez で検索したのです♪
この手のサイトは殆ど始めてです、仕事とは全くの畑違いですし...

今後、面白いサイトがあったら、アドレス付で紹介して下さい。
もっとも、アドレス添付は色々問題がありそうですが...

No.582 Re: No.579-2  投稿者:FUKUCHAN 投稿日:2008/03/03(Mon) 09:27  
三角形の合同から、AH=CDとなるのですね。
従って、AB=sqrt(7)、BC=sqrt(6)とすれば、MBの延長は、ACを1.85:3.15に分ける訳!!!

No.581 速いですね  投稿者:moonlight 投稿日:2008/03/03(Mon) 09:14  
既にご存知だったのでしょうか。
面白いし,よく纏まっていて,頻繁に更新されています。
算額の問題の紹介も愉しい。です。まだまだ考え中です。

No.580 Re: No.579  投稿者:FUKUCHAN 投稿日:2008/03/02(Sun) 16:16  
このページは面白いですね♪
マルファッティの問題も掲載されていました→この問題については、酒転童子さんの部屋を参照下さい:
http://www.k3.dion.ne.jp/~edo-cad/malfatti.html

又、SANGAKU なんて言うのも有りました。
一瞬「山岳」かと思ったのですが、「算額」だったようです。
「産額」については、宮部みゆきの「震える岩」で教わりました。

No.579 CDの中点の軌跡については  投稿者:moonlight 投稿日:2008/03/02(Sun) 11:26  

直線(線分)になることは判りました。なるほどねえ。
でもまだ計算だけ。初等幾何的には,もう少し考えてみます。
で.そこからの作図が・・・,やはり難しい。

時間は確かに消費されますけど,
いろいろと知らなかった(あるいは忘れた?)図形の性質なんかが
沢山掘り出されてその1つ1つが結構面白かったりします。

ちなみに,海外のサイトで
Squares ABDE and BCGH are constructed on the sides AB and BC of a triangle ABC. Prove the following:
1. The median BM of the triangle formed externally between the squares is also the altitude of triangle ABC.
2. BM = AC/2.
という問題/性質が掲載されています。(証明は各自で)
この問題の正方形ABDEとBCGHの部分を,
相似な菱形ABDEとCBHGとすれば,CDの中点の軌跡の話になったりします。
ふむふむ。
(図は無断借用)

No.578 難しい・・・  投稿者:N/T 投稿日:2008/03/02(Sun) 10:33  
時間だけがどんどん消費されてしまう〜
No.577 久しぶりに素面になってみたら・・・  投稿者:FUKUCHAN 投稿日:2008/03/02(Sun) 10:14  

午前中に内科検診を受ける為に、昨晩からアルコールを抜いたので、1年ぶりの素面状態♪
そこで朝から見直していたのですが、BDじゃなくCDの中点が1直線上を動くのは確かなのですが、では描けるかとなると・・・

大体、4つの円が接するなんて描き方自体が可笑しいですよね!

実は或方法で描けたと思った図を添付します(もう一本の作図補助線は隠してありますが)。
対角線の長さはCADの誤差範囲と「勝手に」思いこんでいたのですね!(注釈忘れですが、上の線の長さは8です)

少なくとも、昼飯でビールを飲むのは止めておこう。

さぁ、検診、検診...

No.576 す,すごい。  投稿者:moonlight 投稿日:2008/03/01(Sat) 18:15  

BDじゃなくて,CDの中点ですね!

No.575 アポロニウス  投稿者:moonlight 投稿日:2008/03/01(Sat) 17:46  

中点の軌跡は,アポロニウスの円ですね。
で,条件AC=BDはその円周の限られた部分になるという条件でしょうか?
きっとそうですね。

「ニュートンの定理」(色々ありますけど,ここでは
円に外接する四辺形の対角線の中点と外心は一直線上にある,というもの)
は使えそうなんですけど・・・,

垂線の足はAB上を動き回るわけですね。
で,その中でも特にCD=9となるものを探す・・・
じゃなくて,円に外接するような上手い条件があるわけか・・・なあ。うーん。

No.574 RE: 1.85と3.15  投稿者:FUKUCHAN 投稿日:2008/03/01(Sat) 12:57  
四辺形ABCDに於いて、AB:BC:DA=5:6:7、またAC=BDとなるものを考えます。
この時辺BDの中点はどんな位置に有るでしょうか?

所謂軌跡の考え方ですが、その中点から辺ABに垂線を下ろすと、その足は・・・

尚、4つの接円を描くと前に言いましたが、勿論これだけでは描けません。

今はもっと簡単な作図法を模索中です。

No.572 1.85と3.15  投稿者:moonlight 投稿日:2008/02/28(Thu) 23:21  
酒転童子さんのページも拝見させてもらいました・・・わかりません。
もう少しヒントを下さい(ペコリ)。
色々描いてみた図と疑問点は解答用の方に上げます。

No.571 RE:570  投稿者:FUKUCHAN 投稿日:2008/02/28(Thu) 20:46  
>これは触れてはいけない難問なのでしょうか?

酒転童子さんの部屋を、詳細に覗いてみる事をお勧めします♪

No.570 円という事なら  投稿者:moonlight 投稿日:2008/02/28(Thu) 00:12  
例えば,半径3,4,6,5の4つの円を順に隣同士が接して半径3と6の円も接するように描け。
※ただし,お互いに接していない円の中心間の距離は等しくなるように。

という作図題になります。

これが描ければ,
辺の長さ(の比)が,7,10,11,8の四辺形で
対角線の長さが相等かつ円に外接する四辺形が描けたことになりますね。
でもねえ,判らない。
これは触れてはいけない難問なのでしょうか?


No.568 1.85ですか・・・  投稿者:moonlight 投稿日:2008/02/27(Wed) 12:01  
補助円なのですね?合計5・・・
辺の端点を中心とする内接円の接点を通る円の半径ではないし・・・。
何ですか?うーん。

おっと,半径の比(値)が決まる!のですか!
読み飛ばした!なんでなんで?しかもそれが補助円って,

No.567 外接する四辺形  投稿者:FUKUCHAN 投稿日:2008/02/26(Tue) 21:27  
これは、半径の比が決まっている4円を、お互いに接するように描けと言う事!
酒転童子さんや小生の解答集にヒントがありそうですね!

勿論、コンパスと定規では描けないと言う答えも有りそうですが。

最初の問題に限って言えば、5の辺に対して1.85、3.15の円を描くのが基本です(後の円は決まってしまいます)。
それらを個々に接する描き方ですね・・・これは回答欄にて発言すべき???

No.566 参考図  投稿者:moonlight 投稿日:2008/02/26(Tue) 17:34  

こういう作図です。

No.565 5-6-8-7も5-7-9-8も  投稿者:moonlight 投稿日:2008/02/26(Tue) 10:16  
辺の長さで円に外接していることは確定しているので,

「4辺の長さが与えられた対角線の長さが等しい四辺形を描きなさい」

という問題になりますね。それでも暗中模索ですけど。

No.564 6−7−9−8  投稿者:moonlight 投稿日:2008/02/25(Mon) 21:51  
でも良いです。(丸二日?ぼちぼち考えてもまだわかりません。)
図学を知ってる人なら朝飯前なのでしょうか?

無理矢理それらしい絵を計算ずくで描いては見ましたが・・・。

No.563 もちろんA  投稿者:moonlight 投稿日:2008/02/25(Mon) 21:47  
の方ですね。「一般的な」四辺形を描きましょうってことです。

どこから描くのか,円からなのか,辺(あるいは線なのか)は
この際どうでも良い(っていうぐらい僕には難しいのです。
ちなみに何人か同僚に訊いてみましたが,いずれも面白いなあ,わからん!です。)

たとえば,ある長さの線分がある。
それに接した円も描いてある。
では,その線分をひとつの辺とし,
円に外接し,なおかつ,対角線の長さが等しいような
四辺形を作図せよ!って言う話になると,
まず「描けるかどうか」(線分の長さと円の大きさの比率や接点の位置などの条件)
が五月蝿い問題になりませんか?

そこで,「具体的」でもよいので!って言う意味で5−6−8−7を設定してみました。
できれば「一般的」な作図法を。

No.562 RE:というわけで次の御題  投稿者:FUKUCHAN 投稿日:2008/02/25(Mon) 21:35  
これも二つの問題に分けるべきですね!

@対角線の長さが等しい四辺形の作図法
 先ず浮かぶのは正方形!!!凧形など、判りやすい図形は「無限に」描けます。。

A辺の長さの比が5:6:8:7で、対角線の長さが等しい凸四角形を描け!

後者は円に外接しますが、何故かと言う問題なのかな?
単に、このような四角形を描けと言う問題なのでしょうか???


では、小生からパクリ問題です:
・6:7:9.8の凸四辺形を作図せよ!
 勿論、対角線の長さは等しく、円に外接すること(って描けますか?)

Aの問題が解ければ簡単かな?
出来上がった四辺形の頂点と、円との接点の位置関係等々、ヒントは出さない方が良さそうですね!

No.561 う〜ん  投稿者:N/T 投稿日:2008/02/25(Mon) 18:43  
円は先に描くのかな、それとも後でもいいのかな?
No.560 というわけで次の御題  投稿者:moonlight 投稿日:2008/02/25(Mon) 09:09  
ではまた,別の御題です。
きっと他の方とは違って,僕の出題は,「答えを知りません」です。
だからといってクレクレ君というわけでもないのですが・・・。

さて,本題。
(円に外接し,)対角線の長さが等しい四辺形の作図法

具体的には例えば,凸四辺形ABCDで
AB=5,BC=6,CD=8,DA=7でAC=BDとなるような四辺形。
※計算でACを求めるのは,(作図のヒントを得る為の裏作業はともかく)御法度とします。

No.557 moonlightさんの出題!  投稿者:FUKUCHAN 投稿日:2008/02/15(Fri) 17:10  
moonlightさんの出題です(解答用BBSのNo.565添付のpdf参照)

定点PとPを通らない定直線L(出題では筆記体の小文字L)が与えられたとき,定直線上に
2点A,Bをとり,三点PAB が正三角形をなすように点A,Bを作図しなさい。
注意 作図問題なので,直定規とコンパスのみ使用可とします。
また,定規の目盛を使うことは厳禁です。定規はあくまで直線を描く為にだけ用います。

No.556 No.554追々記  投稿者:FUKUCHAN 投稿日:2008/02/15(Fri) 13:33  
下図で、点Pが正方形の辺上を動くとき、正三角形の中心(重心・内心・外心・垂心)はどんな軌跡を描くでしょうか?
CADで作図すると答えが浮かんできますが、証明は面倒???

No.555 No.554追記  投稿者:FUKUCHAN 投稿日:2008/02/13(Wed) 14:14  
下図に「a」とか「P」とか書いてありますが、これは接点指定、角度指定で正三角形を描けと言う問題を作った(それを流用した)ものです。
これにも挑戦して下さい・・・やさしいっす♪

No.554 四辺形と正三角形  投稿者:FUKUCHAN 投稿日:2008/02/13(Wed) 14:12  

下のNo.539で:
>最大の長さを持つ辺と、正三角形の1辺が共有される場合と思います
と直感的な発言をしましたが、これは間違っている公算が大です。
四辺形の特殊例として正方形を使ってみて、間違いに気が付きました。
そこで問題です。
図のように正方形に内接する正三角形が有る時、面積が最大となるものと
最小となる正三角形を描いて下さい。

証明はちょっとややこしいかも知れません(幾何的には)。

No.552 奇麗ですよね  投稿者:moonlight 投稿日:2008/02/09(Sat) 15:25  
そうなんです。描いてみると簡単で美しい。
三つの正三角形からならとても簡単です。

でもそっか,それで上手く元の三つの三角形と大きな三角形の辺の長さを1:2:3:5
にするには?って問題なんですね。
へえぇ!どうするのだろう?

考えてみないと!

No.550 変形問題  投稿者:FUKUCHAN 投稿日:2008/02/06(Wed) 14:45  

moonlightさんの問題を少し変えてみました。
頂点を共有する三つの正三角形があり、それぞれの辺の長さの比率は1:2:3で、2と3の三角形のなす角は、図のように15°。
出来上がった正三角形の変の長さの比が5となるようにして下さい。

もちろん、定規とコンパスでの作図ですが(コンパスだけでも出来ますが)、描いて見たら「超」簡単だった!

No.549 RE:No.544 出来ました!  投稿者:FUKUCHAN 投稿日:2008/02/02(Sat) 08:14  
整理できたら解答用BBSに掲載します。
ヒントは120°回転ですね!(別に回転しなくても良いのですが)
幾何的な解答を作成しますが、出来上がった図はベクトルで考えた方が理解しやすいかも...


[直接移動] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29]
- 以下のフォームから自分の投稿記事を修正・削除することができます -
処理 記事No パスワード

- Joyful Note -


本音のCAD・CAM http://amaterus.jp/