図形クイズ掲示板 クイズの投稿は自由です。どしどし参加してください。
ただしネタバレは禁止、ヒントまでにしてください。

[トップに戻る] [使いかた] [ワード検索] [過去ログ] [管理用] [注意事項]
名 前

題 名 解答用BBSはこちら
本 文
添付File
パスワード (英数字で8文字以内)    
No.222 RE:No.221  投稿者:FUKUCHAN 投稿日:2006/05/23(Tue) 11:26  
これは水、緑、あずきの位置が固定され(一義的に配置が決まり)、青の置き方(二通り)を考えれば良いと言う条件ですね!

今度は舎弟でなく、小生が解答動画を作ってみます(今日中?)

No.221 無題  投稿者:リンデン 投稿日:2006/05/23(Tue) 06:53  

皆さんおはようございます。空間的なものを頭の中で考えるのは大変だという問題です。たとえば、「炊事用のゴム手袋は左用と右用にわかれていますが、左用のゴム手袋を裏返すと右用になる?(YES,NO)」添付した問題ですが、問題になるのは青の向きかもしれません。「ソーマキューブ」は2年まえ、永岡書店から1000円で発売されていたのですが、たぶん発売中止、去年はダイソーで105円で売っていましたが、今はあまり見かけません。

No.220 3Dタングラム  投稿者:FUKUCHAN 投稿日:2006/05/21(Sun) 18:40  

添付図のように、各ブロックを色分けし、且つ透明にしておけば何とか表示可能なようです。

しかし、答えを知っていても、アセンブリは厄介だなぁ(出題者なのに答えはまだ見つけていません)。

この問題はアメリカの数学教師の部屋から無断でパクリましたが、この先生も箱根細工のパクリみたいですね。

No.219 Three-dimensional Tangram  投稿者:FUKUCHAN 投稿日:2006/05/21(Sun) 17:46  

Download:219.dxf 219.dxf 小生もdxfデータを貼り付けてみます(JW-Win にて DXF化)。

これら7個のブロックを組み合わせて、立方体にして下さい。
それぞれのブロックは、小さな立方体から出来ており、6個のブロックは4個の小立方体から、残り一つは3個の小立方体から出来ています。
4×6+3=27ですから、判りやすいと思いますが、どうやって完成図を表示するのかな?

No.218 角の3等分  投稿者:酒転童子 投稿日:2006/05/20(Sat) 21:25  
 >このアルキメデスの方法というのは、もしかして二等辺三角形の活用かな?

 そうですね。
 角度の 1/3 が作図できた時点で、二等辺三角形が描けます。

No.217 懐かしいパズル  投稿者:FUKUCHAN 投稿日:2006/05/20(Sat) 17:35  

こんなプラスチックのパズルが出てきました(影絵パズルと呼んでいたような記憶が・・・)

これを全部使って、添付図のような三角形を二つ作って下さい。
小さい三角形は◎印そのものです。
パズル板は、水平・垂直・45°の線で出来ており、図の数値は長さの比率です。

No.216 RE:No.214 角の3等分  投稿者:FUKUCHAN 投稿日:2006/05/19(Fri) 22:53  
このアルキメデスの方法というのは、もしかして二等辺三角形の活用かな?
No.215 RE:No.213 正七角形  投稿者:FUKUCHAN 投稿日:2006/05/19(Fri) 22:52  
酒転童子さん、こんばんは

>六角堂、八角堂はありますが、七角堂は聞いた事がありません。

私が聞いた五芒星の描き方は家紋でした。
と言うことで、例えば七曜星などの家紋作図はありませんでしたか?(この家紋は田沼意次だったっけ?)

No.214 角の3等分  投稿者:酒転童子 投稿日:2006/05/19(Fri) 19:46  
 与えられた角度の3等分は、私のCAD遊びのテーマの一つなんです。
 私のHPにも載せています。
 面白いですよね、「ギリシャ三大難問」。(作図不可能が証明されている)
 ズルしてでも、作図したくなります。
 正七角形の中心角の3等分も、私のやり方で作図しました。
 この方法は、「アルキメデスの紙片使った作図法」を参考にしたものです。
 参考図書 : 数学100の勝利Vol.2 : シュプリンガー・フェアラーク東京
: H.デリー 著、 根上生也 訳

 数学の世界では、作図と認めてはもらえない方法です。
 私のHPにも、その事を明記してあります。
 ズルい作図法ですので、ここでは作図法は述べません。

 で、解答用BBSに投稿した作図法をみつけた、と言うのが真相です。
 
 

No.213 正七角形  投稿者:酒転童子 投稿日:2006/05/19(Fri) 19:19  
 こんばんは。

 六角堂、八角堂はありますが、七角堂は聞いた事がありません。
 ですから、宮大工は正七角形は作図しなかったのではないかと・・・。

No.212 角の三等分・・・作図可能な場合(予測)  投稿者:FUKUCHAN 投稿日:2006/05/19(Fri) 16:07  
作図で得られる(理論的=再現可能な)角度をθとした時、3×θ/nに於いて、一般的にnが3の倍数で無い時は、作図で三等分可能なようです(未証明)。
360/5=72などは、正三角形の内角との差が12°、その2倍が3等分の値ですから簡単です。

それでは270/7°の1/3の作図は?
また、240/11、360/17などは?
三つとも問題としよう(小生は予測しただけで、まだ解いていません。何つったって仕事の合間だもんなぁ!)

360/107°なんかに挑戦する人は居るかな?(手間が掛かるだけで、理屈としては解ける筈です)

しかし、元の角度をどうやって描く???

No.211 RE:角の三等分  投稿者:FUKUCHAN 投稿日:2006/05/18(Thu) 10:58  

正7角形の中心角(と呼んでも良いのかな)の3等分ですね。

リンデンさんの得意技を使い、90+30=120で(それぞれ1/7)求まりました。
求め方は後で解答用BBSに掲載します。

No.210 角の三等分  投稿者:リンデン 投稿日:2006/05/18(Thu) 09:04  
皆さんこんにちは、先日JW-CADをインストールしました。直線でも描くかなと思って描いたら円や長方形だったりして、クリックしたときのダイヤル状のスイッチは何?そこで、CADサイトで名前からよさそうな「とほほのJWW入門」を見たがいまいち、次に図書館へ行ってCADの本をさがしたら、みーんなAutocadの本でいまいちと思っていたら、「図形作図ハンドブック、ソフトバンク社」の本を見つけそれに見入ってしまいました。ナゼかというと「CADに頼っては忘れる作図…」と書いてあってオモロヤンカと思ってあけてみると昔、書けなっかった「直線とそれ上にない2点が与えられ、2点を通り直線に接する円を書け」とか、自分としては初めてみる作図がありました。それで…JWCADは?…ボチボチです。
ところで「角の三等分にかんする問題」です。角の三等分ができる角度は180°や90°等の有名角度ですが、『 360/7 の角度が与えられたときこの角度の三等分をせよ。(すなわち、120/7を求める)』既知の問題であればおもしろくありませんが

No.209 re:RE:お知らせ  投稿者:N/T 投稿日:2006/05/16(Tue) 21:43  
 プロパイダに連絡すれば契約解除や警告の処置はしてくれるようです。
 ただ、国内からのものはその手で対応していますが、最近は外国の
プロパイダからの投稿が大半なので、その手が使えないんです。
 ドメインを丸ごとアクセス禁止にしても、次から次とドメインを変更
するので今回からプログラムの方にも何種類か細工をしました。
 で、どの方法が有効なのかを只今実験中なんです。

No.208 RE:お知らせ  投稿者:FUKUCHAN 投稿日:2006/05/16(Tue) 21:29  
N/Tさん、結構苦労が多いですね。

頻繁に書き込む馬鹿を、法的に何とかする方法は無いのだろうか?
匿名の良さと悪さと・・・みんなで何とかしたいなぁ!

No.207 お知らせ  投稿者:N/T 投稿日:2006/05/16(Tue) 20:09  
 最近、スパム書き込みが酷いので色々と対策してます。
 掲示板のアドレスも時折変更していますので、繋がらない時や警察のサイトに
繋がってしまう場合はトップページから再度アクセスしてみて下さい。

 一部の掲示板では、トップページから入らなければ投稿したのに警告が出て
投稿できない場合もあります。
 この場合もトップページからアクセスすれば投稿できます。

No.206 展開図の復元  投稿者:FUKUCHAN 投稿日:2006/05/16(Tue) 07:57  
正四面体を稜線で上手く切ると、展開図は正三角形になりますが、或立体を稜線で展開したら正方形になりました。
この立体を復元して下さい。

答えは一つなのだろうか?
Alibre Design Xpress で、或形状を作ろうとしていた途中の段階で、フッと形が気になり、展開図を考えた結果です。

No.205 RE:No.202 内分点  投稿者:FUKUCHAN 投稿日:2006/05/14(Sun) 10:58  
アポロニウスの円(not アレニウスの円)から浮かんだ問題でしたが、考えてみると易しい問題でした。
酒転童子さんの得意技に属するのでは・・・ヒントですよ!

No.204 RE:え゛っ! その2  投稿者:FUKUCHAN 投稿日:2006/05/13(Sat) 21:25  
>「日本で何人」って言うくらいのクラスですよね???

一部・二部上場会社の社長とどっちが多いのかなぁ?

でも、四段・五段より強い初段もゴロゴロいる世界で...だから・・・あてにならないのです。
まぁ梯子段や初級よりは強いと思いますが、しらふのプロと(置き碁で)互角でも、酔っぱらったプロには「幾つ石を置いても」勝てる気がしない!

No.203 え゛っ! その2  投稿者:N/T 投稿日:2006/05/13(Sat) 20:26  
 日本棋院の5段って・・il||li( ̄∇ ̄‖)il||li
 「日本で何人」って言うくらいのクラスですよね???

No.202 内分点  投稿者:FUKUCHAN 投稿日:2006/05/13(Sat) 14:19  

或意味で、No.201 関連なのですが(解答を準備していて浮かんだ)、直方体と線分ABが与えられている時、直方体の辺の比率(m:n)の2乗の比率(m^2:n^2)で線分ABを内分する点Pを『作図』して下さい。

No.201 軌跡とその応用  投稿者:FUKUCHAN 投稿日:2006/05/13(Sat) 11:15  

GCで遊んでいたら気がついた問題ですが、それなりに有名なのかな?(答えを作ってみたらそんな思いが・・・)

直線上に3点A、B、Cがあり、ABはBCの2倍の長さです。
他に1点Pがある時、∠APB=∠BPCとなる点Pの軌跡は?

又、これを利用して、3×tan(θ)=tan(2θ)となる角θを作図で求めて下さい。

No.200 RE:ウヰスキー  投稿者:FUKUCHAN 投稿日:2006/05/12(Fri) 22:25  
>−20℃まで冷やしたウヰスキーを、呑んだ事ありますか?

昔、新宿歌舞伎町の裏で、将棋の芹沢博文先生(故人)と有ったときに、マスターが冷蔵庫からボトルを出してきて彼に渡しました。そこで先生から、お前もどうだと呑まされました(勿論、進んで呑みました)。
その温度は??? もうチョット高かったかな? 30年以上前の想い出。

これが好きになると、ロックなんか呑めないでしょうね。

★N/Tさん、ごめんなさい。 いつの間にかウヰスキーの掲示板に・・・

No.199 ウヰスキー  投稿者:酒転童子 投稿日:2006/05/12(Fri) 21:40  
 N/Tさん、FUKUCHANさん、こんばんは。
 
 −20℃まで冷やしたウヰスキーを、呑んだ事ありますか?
 グラスに注ぐと、ウヰスキーの入った部分のガラスが凍ります。
 1オンスグラスに半分ほど注ぎ、喉の奥に放り込み、すぐ飲み込みます。
 そうしないと、喉が凍傷になるからです。

 飲み込むと、ウヰスキーはゆっくり胃に向かいます。
 ウヰスキーの粘度が、低温のために上がっているからです。
 胃に落ちると、冷たさと熱さが同時に広がります。
 不思議な感覚を味わえます。

No.198 もっと凄い話(自慢話)  投稿者:FUKUCHAN 投稿日:2006/05/12(Fri) 21:03  
五段の免状を与えると言う、日本棋院の推薦状を持っています。
関西棋院の方では六段ですが、これには(日本棋院も)棋譜認定というのがあり、簡単にはくれないようです(最近の棋譜を送ったら、間違いなく落選!)。

しかし、初段、二段・・・と免状を持っていない為、飛び付け五段とかになると、免状代で「超高級パソコン」が買えてしまうくらい高いのです。
退職金が出たら、記念に取得しようかな?

ところで「酒転童子さん」:牛乳割りに挑戦しましたか?
小生は牛乳1:うぃすきい3〜4です(極秘レシピの公開!)

No.197 え゛っ!  投稿者:N/T 投稿日:2006/05/12(Fri) 19:08  
>囲碁はアマ四段ですが、

 いや、これは凄いです。
 初段はあまりアテにならないですが、将棋でも碁でも二段から上は
確実に強いと思います。
 四段ともなると、私じゃ知っている範囲に一人も居ないですから、
どのくらい強いのかも判らないくらいです。

No.196 RE:No.195  投稿者:FUKUCHAN 投稿日:2006/05/12(Fri) 12:21  
GCは駄目ですか、残念ですね。
インストーラーは Win XP なら標準装備の筈なので、どこかで外したのでしょうか?

ところで牛乳割りですが、バーボンでは結構一般的なのです。
一度試してみて下さい。何となくマイルドになり、牛乳がすぐになくなります(と言うことは比例して・・・)。

囲碁はアマ四段ですが、こんな段位ほど当てにならないものはありません。
実戦から遠ざかると、淡々とした勝負はまだ良いのですが、殺し合いみたいな碁になると、もろくなるようです。

No.195 GCは駄目です  投稿者:酒転童子 投稿日:2006/05/12(Fri) 00:29  
 FUKUCHANさん、こんばんは。
 牛乳割りですか?
 聞いたことはあるのですが、自分で試したことはありません。
 牛乳は大好きですので、毎日飲んでいますが・・・。
 今度試してみます。(呑みすぎるかも???)

 酒の種類は何でも呑みますが、全てに合う肴は、CADですね。
 時間を忘れて遊んでしまいます。

 FUKUCHANさん、碁をやるんですね。
 頭の回転の速さは、碁から来てるのでしょうか。

 私、CADと出会わなかったら、パソコンなんて自分で買ってなかったと思います。
 それが今では、BBSで共通の話題で盛り上がる事ができるなんて・・・。
 しかもHPまで作ってしまって、夢みたいな話です。
 先日も、インターネットで知り合った方からメールが来ました。
 本を出版するので、一冊私に送ってくれるそうです。
 私の年齢が、何だかスゴイ時代に間に合ったようです。

No.194 数学(図形)問題で考えた事  投稿者:FUKUCHAN 投稿日:2006/05/11(Thu) 21:51  
小生も色々「怪答」を掲載していますが、また一方、科学者が専門用語を使わないカフェトークを始めていますが、果たしてこの議論が誰(どこ)まで通じるのか、チョット気になってしまいました。

孫がピカピカの1年生! この中の問題は、どれをとってもこの子に理解出来るように説明出来ない!!!
まぁ、当然なのですが(もっと基本的な所からの説明が必要なのですが)、今扱っているクイズは、ユークリッド幾何学がベース=CADの世界ですので、基本的には、公理(と言ったかな?)に戻って解説すべきかもしれません。

定理や解法を記憶したりするのと較べると、この解法の基礎が身につくと、忘れるのは大変です(この言葉は、変形していますが大好きな言葉です。 あの坂田栄男先生が(囲碁)、小生の碁を表して「ここでこう打てば、君、負けるの大変だよ!」と言ってくれた・・・だから勝ちとは言ってくれませんでしたが・・・その碁は負けました)。

No.193 GCについて  投稿者:FUKUCHAN 投稿日:2006/05/11(Thu) 21:34  
酒転童子さん、こんばんは!

GCはまだ「駄目」ですか? Windows Installer のインストールは出来ませんでしたか? 早く一緒に楽しみたいのですが...

うぃすきぃ、呑んでいますよ!!! 貴兄(禁句!)の銘柄は? 小生は何でも「有り」です・・・牛乳割りはうまいっす(或人に勧められて=強要されてから、病み付きに近い状態です・・・或人が読んでいると怖いので、適当に話を合わせているだけかも・・・このスレも見ている???)。

No.192 久しぶりにGC遊び  投稿者:FUKUCHAN 投稿日:2006/05/11(Thu) 19:07  
三角形の面積2等分の線をGCで描いてみました。

http://fukuchande.gozaru.jp/sankaku_2_toubun.html

軌跡をオンすると、面白い包絡線が見えてきます(解答用BBSに掲載すべき?)。

No.191 RE:二等分難しいですね。  投稿者:FUKUCHAN 投稿日:2006/05/09(Tue) 23:20  
リンデンさん、こんばんは

解答用BBSに掲載の通り、酒転童子さんや私の方法でOKの筈です(易しいとは言いませんが)。
前者は同じ面積の正方形を作図し、小生の場合は1/sin(A) の正方形で代用(?)している違いはありますが...

問題は角Aを共有するか、BかCかの検証がやっかいなだけでは?

No.190 二等分難しいですね。  投稿者:リンデン 投稿日:2006/05/09(Tue) 18:27  
みなさん、こんばんは
難しいですね。また、他力本願で、グーグル教の神様に聞いてみましたところ、おつげは
  http://www004.upp.so-net.ne.jp/s_honma/half/half.htm
でどうか、ということでしたが、たぶんダメでしょう。ここの中に
野沢健助 著、「初心者のための平面画法入門」(日刊工業新聞社)という本があったので、近くの図書館に行って調べましたが数学というより製図関係の本らしくおいている図書館は皆無でした。アマゾンで古本があったのですが送料を追加するとほぼ定価に近い2000円…ずる〜い!

No.189 RE:No.187  投稿者:FUKUCHAN 投稿日:2006/05/07(Sun) 18:18  
リンデンさん、こんばんは

>等積変形

私はこの方法を使いました。
相似形ならば、面積比較が容易という点を利用しています。

No.188 RE:No.185/186  投稿者:FUKUCHAN 投稿日:2006/05/07(Sun) 18:16  
チョット「たどたどしい」解法を記載して、戻ってみたらリンデンさんのヒント!
回答欄に投稿した方法は、今までに使ったことのある方式の組合せでしかありませんので、リンデンさんの方式(1点を通る線での2等分)を使えないか、検討してみます。

No.187 「難しいですね」のつづき  投稿者:リンデン 投稿日:2006/05/07(Sun) 18:15  
また、上と下に分かれてしっまて、申し訳ありません。
もとの三角形ABCのどちらかの辺を与えられた直線に平行な辺を持つ三角形に等積変形して考えるぐらいかな〜

No.186 難しいですね。  投稿者:リンデン 投稿日:2006/05/07(Sun) 18:03  
三角形の面積の二等分難しいですね。「面積の二等分」で検索したら次のようなサイトがありました。ヒントになるかどうかわかりませんが…
  http://www.fuzoku.okayama-u.ac.jp/ml/kyouka/math/q13.html

No.185 No.184  投稿者:N/T 投稿日:2006/05/07(Sun) 16:55  
簡単そうに見えるけど・・・、凄く難しいような気が???
何時間も潰して、まだ解けない・・・

No.184 No.179 三角形の面積2等分:一寸変更  投稿者:FUKUCHAN 投稿日:2006/05/06(Sat) 16:16  

又、酒転童子さんの問題の修正です。

三角形と一つの直線が与えられている時(添付図では線分ですが)、この直線と平行な線で、三角形の面積を2等分して下さい。

No.183 ありがとうございます  投稿者:酒転童子 投稿日:2006/05/05(Fri) 21:08  
 リンデンさん、こんばんは。
 私のHPを見てもらえたのですか?
 すごく嬉しいです。
 ありがとうございます。

 それと、「様」はやめて下さい。
 「さん」で、いいじゃないですか。

No.182 無題  投稿者:リンデン 投稿日:2006/05/05(Fri) 17:58   HomePage
あれれ、パスワードいれて、ついエンターキーを…しまった!(パソコン暦3年が露呈)……続きです。酒転童子様のページを全部は見れませんでしたが、楽しかったです。そのときに思い出した問題というよりパズルです。
(2)「鉄でできた直方体の対角線を目盛りつきの定規で測れ(計算なし)」
この問題は江戸時代ころの問題だそうです。数学パズルの本に載っているときもあります。知っている方もいるかもしれません。

No.181 問題を2つほど  投稿者:リンデン 投稿日:2006/05/05(Fri) 17:41   HomePage
(1)△ABCの中に点Pはあり∠BAP=30°∠CAP=20°∠PBC=10°∠PCB=20°を満たす△ABCと点Pを作図せよ。長さは任意で、定規、コンパス、分度器を用いてよい。
上の問題は「整角三角形」と呼ばれる問題の1つです。(作図の問題で分度器の使い方に制約すべきかどうかは知らないのですが、一応フツーの使い方で)

No.180 RE:No.179 三角形の面積2等分  投稿者:FUKUCHAN 投稿日:2006/05/04(Thu) 21:47  
>FUKUCHANさん、もちろん呑んでますよ。

安心しました〜〜〜

面積1/2と言われただけで、三角形の相似比が1:√(X) と浮かんでしまった。
ここで「こんな発言」をするとは! 呑み過ぎかも・・・

No.179 三角形の面積2等分  投稿者:酒転童子 投稿日:2006/05/04(Thu) 18:45  

 こんばんは。
 きょう、古典的な問題を数学の本で見つけました。
 三角形の面積を、底辺に平行な線で2等分する、という問題です。
 答えを見ると、私の作図とはまったく違うものでした。
 みなさんなら、どう作図するのかな? と思いましたので、投稿します。

 FUKUCHANさん、もちろん呑んでますよ。

No.178 ウヰスキー  投稿者:酒転童子 投稿日:2006/05/03(Wed) 18:02  
 私も5時前から飲んでます。
 今から、おかわりをするところです。

 CADとウヰスキー、相性抜群ですから・・・。

No.177 外接正方形の数  投稿者:FUKUCHAN 投稿日:2006/05/03(Wed) 17:23  
或四辺形に於いて、外接する正方形が:
@無い(ゼロ、描けない)
A一つ有る(描ける)
B無限に存在する(深く考えなくても描ける?)

の三通りが考えられますが、例えば対称形などで二つだけあるとか、ある有限個存在する可能性はありますか?

有ると言う人はその事例を紹介して下さい(無限の内の2個とかは駄目です)。
無い場合はその理由を証明して下さい。

No.176 RE:No.175  投稿者:FUKUCHAN 投稿日:2006/05/03(Wed) 17:18  
酒転童子さん、こちらは休日なので(平日でも???)もう呑み始めていますが、不動点を探そうでは面白く無さそうです。
これだと、対応する点が回転する場合の中心を求める事になり、垂直二等分線(中心の軌跡)を使う方法で簡単過ぎです。

No.170 の点が、何故不動点となるか証明する方が面白いのでは???

おっと、うゐすきぃのおかわり!

No.175 No.174  投稿者:酒転童子 投稿日:2006/05/03(Wed) 16:12  
 日本語になっていない箇所がありました。

 証明というより、FUKUCHANさんが言うように、「不動点を探そう」の方が強いです。

に、訂正します。

No.174 不動点で遊ぼう2  投稿者:酒転童子 投稿日:2006/05/03(Wed) 15:34  

 FUKUCHANさん、こんにちは。 

 証明というより、FUKUCHANさんがのように、「不動点を探そう」の方が強いです。
 FUKUCHANさんの問題で、不動点の2例目を添付します。
 不動点の作図法は載せていないので、こちらで公開します。

No.173 RE:No.170 不動点で遊ぼう  投稿者:FUKUCHAN 投稿日:2006/05/03(Wed) 14:53  
酒転童子さん、こんにちは

これは、この不動点を中心に「適切に」回転すると、長方形がピッタリと重なることを証明せよ、と言う問題ですよね?


[直接移動] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29]
- 以下のフォームから自分の投稿記事を修正・削除することができます -
処理 記事No パスワード

- Joyful Note -


本音のCAD・CAM http://amaterus.jp/