図形クイズ掲示板 クイズの投稿は自由です。どしどし参加してください。
ただしネタバレは禁止、ヒントまでにしてください。

[トップに戻る] [使いかた] [ワード検索] [過去ログ] [管理用] [注意事項]
名 前

題 名 解答用BBSはこちら
本 文
添付File
パスワード (英数字で8文字以内)    
No.774 Re:解決はしたのですが・・・作図問題としては?  投稿者:FUKUCHAN 投稿日:2009/04/25(Sat) 18:27  
左右対称で考えても良いので、解答用にヒント図を載せましたが、二次方程式を解く事になるので、適切な作図方法を捜すのは大変そう。
閃きが必要?

No.772 re:解決はしたのですが・・・  投稿者:N/T 投稿日:2009/04/24(Fri) 18:42  
感覚的にはすぐに閃くので描けますが、
理由の正確な説明が難しいかも?

No.771 解決はしたのですが・・・作図問題としてはどうでし...  投稿者:moonlight 投稿日:2009/04/24(Fri) 10:03  
定点Oからの距離が4,√6,√6である三点A,B,Cについて
面積が最大になる場合を作図しなさい。
(つまり,三角形の向きはどうでもよいので条件を満たすものを作図)
という問題です。どんなものでしょう。

No.765 re:又 PrimMath  投稿者:N/T 投稿日:2009/03/27(Fri) 19:03  
> しかし、2D作図で「正確に」描こうとしたら、どんな曲線が出てくるのか

実際には何点か求めておいて近似曲線でしょうねぇ〜

No.764 re^2:TORUS  投稿者:FUKUCHAN 投稿日:2009/03/27(Fri) 18:18  

レイトレなら簡単に出来るのだが...
添付図はアイソメですが、視点を変えれば断面を真上(?)から見ることが出来ますね。

これもフリーソフト(POV-Ray)

No.763 又 PrimMath  投稿者:FUKUCHAN 投稿日:2009/03/27(Fri) 12:35  

まだ「AND」などの使い方が判らない(と言うか使えるのかどうかも判らない)。
取り敢えず、トーラスと切断面を描いて見ました。

Shift+矢印キーで、色々な角度から眺める事が出来ますので、作図のヒントとして使えそうですね♪

しかし、2D作図で「正確に」描こうとしたら、どんな曲線が出てくるのか、数学的に計算する必要があります(とすると、結構難しい問題だったりして)。

あっ、昼休みが無くなってしまう!!!

No.762 re:TORUS  投稿者:N/T 投稿日:2009/03/27(Fri) 00:38  
断面ができれば用途が広がりそうですね♪
No.761 RE:No.759 TORUS  投稿者:FUKUCHAN 投稿日:2009/03/26(Thu) 16:09  

PrimMathでトーラスを描いてみました。
すごい機能です。

まだ良く使いこなせませんが、ANDとかORとかNOTが使えそうな予感!
そうすると切断図面も出来るかな???

No.760 むむむ  投稿者:N/T 投稿日:2009/03/25(Wed) 18:22  
これは製図の練習に凄く良い問題ですねぇ〜♪
No.759 断面図を描いて下さい  投稿者:FUKUCHAN 投稿日:2009/03/25(Wed) 14:32  

添付図はR=4、r=1のドーナツ(トーラス)です。
このA−A断面を描いて下さい。

尚、この切断線はr=1の円に(二次元的に)接しています。

No.755 クイズでは無いのですが...  投稿者:FUKUCHAN 投稿日:2009/03/03(Tue) 13:27  

Download:755.pdf 755.pdf こんな問題を出しても良いのだろうか?
と言いつつ問題です:添付PDFの側面の面積は幾つになりますか?

側面以外は簡単ですので、計算してみては...

寸法は、ここのトップページから【CAD利用技術者試験⇒練習問題 基礎⇒立体図形⇒問題11】を参照下さい。

No.752 RE:No.744 いつでも描ける場合  投稿者:FUKUCHAN 投稿日:2009/02/14(Sat) 11:08  

1:1なら点Pは何処にあっても簡単にA、Bが求まりますね!
@円の中心と点Pを結び
A点Pを通り@に垂直な線を描けば終わり!
この描き方はヒントにはならないでしょう!

No.751 ほんと忙しくて  投稿者:moonlight 投稿日:2009/02/13(Fri) 14:27  
考えられてません・・・ヒント・・・ですよね。確かに。
No.750 言い忘れって  投稿者:FUKUCHAN 投稿日:2009/02/12(Thu) 21:26  
これは殆どヒントだったのですね、発言には気をつけねば...
No.749 RE:No.744 √3:1  投稿者:FUKUCHAN 投稿日:2009/02/11(Wed) 17:15  
言い忘れていたことがありました。
点Pの位置によっては(例えば円の中心とか)、求める直線は描けません。

描けない場合の点の領域も求めてみて下さい(これは簡単ですが)。

No.748 いやあ済みません  投稿者:moonlight 投稿日:2009/02/11(Wed) 13:37  
期待されていましたか・・・。いろいろ尋ねっ放しでは・・・なんですものね。
覗いて見てはいたのですが・・・。何分余裕がないものでして・・・。
ちょっくら考えてみます。(多分)

No.747 あれっ  投稿者:FUKUCHAN 投稿日:2009/02/09(Mon) 21:12  
moonlightさんの「明晰な」解答に期待しているのですが...まだかなぁ???
No.745 むむむ  投稿者:N/T 投稿日:2009/02/02(Mon) 20:08  
完璧に脳から消えている…
No.744 √3:1  投稿者:FUKUCHAN 投稿日:2009/02/02(Mon) 17:25  

又、古い問題の焼き直し・・・忘れている人も多いだろうから...

添付図のように円Oと、その内部に点Pが与えられています。
点Pを通る直線と円との交点をそれぞれA、Bとした時、AP:PB=
√3:1となるような直線を描いて下さい。

No.741 RE:No.739 う〜ん  投稿者:FUKUCHAN 投稿日:2009/01/24(Sat) 17:15  
>頭が固くなってしまってる。

いぇいぇとんでもない!
これは小生のチョットした「イタズラ(?)」です。
図形では解けないと思います--->方程式を解く必要が...

No.739 う〜ん  投稿者:N/T 投稿日:2009/01/19(Mon) 21:29  
手掛かりが無い…
2時間考えてこの有様ではなぁ〜
頭が固くなってしまってる。

No.738 昔の問題  投稿者:FUKUCHAN 投稿日:2009/01/19(Mon) 14:04  

を少し変形してみました。
昔と言っても、この図形クイズ掲示板が出来るキッカケとなったと記憶しています。

早速問題です。
添付図の通り、長方形ABCDに長方形EFGHが内接しています。
AB=260、BC=300、EF=100の時、FGは幾つになるでしょうか?

今仕事中(忙中閑有り!)

No.734 Re:370  投稿者:moonlight 投稿日:2008/12/26(Fri) 17:44  
「それぞれの内の一つずつが、斜辺以外を共有すると言う条件に」なりますか?
そこが問題なんです。うーん。何故だろうか。何か見落としてる?
・・・・
ってそっかあ。見落としていました。なある。やはり図が無いと!ですね。
しょーもない質問で申し訳ありませんでした。
みなさま佳いお年を!


No.733 No.716の変形  投稿者:FUKUCHAN 投稿日:2008/12/26(Fri) 15:17  

と言うか攻め方を変えた問題です。

任意の三角形ABCと、点Aを通り∠Aの二等分線に直行する線Lがあります。
この時、線分BCの垂直二等分線とLとの交点をPとすると、∠P=∠Aとなる事を示せ!(当然三角形PBCは二等辺三角形)

No.731 RE:No.730  投稿者:FUKUCHAN 投稿日:2008/12/26(Fri) 14:03  

図形的に単純化すると、斜辺を共有する合同な直角三角形が2組あり、それぞれの内の一つずつが、斜辺以外を共有すると言う条件になりますね!
当然ながら1点で交わります。

交点Pと各接点の距離は同じになりますね♪

No.730 良いお年を,というわけで  投稿者:moonlight 投稿日:2008/12/26(Fri) 08:34  
今年最後の?問題です。
外接する2つの円がもう一つの円に内接しています。
接点は計3つ。それぞれでの共通接線は1点で交わります・・・か?
(そんな「気」がするのですが,今一つ確信が持てません。共通接線がすべて平行になる場合は「無限遠点」で交わるなどという屁理屈を捏ねれば例外なく?)

No.729 良かった!  投稿者:FUKUCHAN 投稿日:2008/12/22(Mon) 21:32  
菱形に引っ掛かった人が、少なくとももう一人居た〜〜〜っ!
No.728 無題  投稿者:N/T 投稿日:2008/12/22(Mon) 18:22  
> 正方形ABCDと菱形CDEFがある時、∠CEAは何度?

頭の体操にはちょうど良いかも?
難しい問題の後だと引っ掛かり易いし♪

No.727 無題  投稿者:FUKUCHAN 投稿日:2008/12/21(Sun) 12:07  
>作図というのはアルゴリズムでは?
CADからドンドン離れるなぁ。

>ちなみに僕らの年代は高校では複素数平面は外されました・・・
お若いのですね♪ 我々の頃は複素平面でしたが...

No.726 帰納法でなくてもアルゴリズムで  投稿者:moonlight 投稿日:2008/12/21(Sun) 10:24  
作図というのはアルゴリズムでは?などと考えるのは素人でしょうか。
正n角形の場合の対角線の積がnになることがわかるようなアルゴリズム,
あるいはnが奇数と偶数の場合,などに分けてのそれぞれの見方
が判ると面白いなあと思いました。
エレガントというか当たり前だなあと判るのは
複素数(平面)を用いた説明なんですが・・・。
<ちなみに僕らの年代は高校では複素数平面は外されました・・・>
<その代わり行列が導入された・・・歳がばれますネ。>

GoGeometryは日本のサイトではありませんから
なかなか比較して面白いものです。
725の問題なんかも楽しい!です。
「決まってないっていうことは勝手に決めればよい?!」
となれば答えはすぐ判ります。
でも理屈は?っていうとまた別の話ですよね。
「決まってないなら勝手に決めれば?!」
という志向の思考は僕らが学生の頃も苦手な人が多かったのですが
昨今増加の一途を辿っているような・・・気もします。

菱形は,混乱よりも説明が楽だからかも。四辺形で統一されて綺麗だし?
二等辺三角形でも良いですものね。何が見えるかが楽しいところです。

No.725 No.722 楽しい話が  投稿者:FUKUCHAN 投稿日:2008/12/21(Sun) 07:41  

gogeometry の中には、こんなお馬鹿な(と言っては言い過ぎですが)問題もありました。

正方形ABCDと菱形CDEFがある時、∠CEAは何度?

余分な線を加える事で、チョット混乱させようとの意図かな?

しかし、お受験詰め込み勉強をしている子供達には難しいのかも♪

No.724 RE:No.723  投稿者:FUKUCHAN 投稿日:2008/12/21(Sun) 07:35  
>初等幾何や作図的に

N角形の場合の説明(証明?)をせよと言われれば、何とかなると思いますが、一般解を求めるのには、数学的帰納法などを併用しなければ無理では?
作図でいえば、A×Bを矩形で表し、それと同じ面積を持つ1×Cの矩形を作ることで、C=A×Bと順番に求めていく事が必要です。

これは初等幾何ではなく、普通に初等数学(中学若しくは高校迄の数学)で解くことになりそうですね。

例えばN角形のr番目の線分の長さを、2×sin(π×r/N)で表す方式!

No.723 ここでは既にお尋ねしたでしょうか?  投稿者:moonlight 投稿日:2008/12/21(Sun) 00:15  
半径1の円に内接する正n角形を考えます。
1つの頂点を選び残りのn-1の頂点に線分を引きます。
そのn-1本の線分の長さをすべて掛けるとnになるのですが・・・
これって初等幾何や作図的に説明できるでしょうか?

例えば,正2角形!の場合,直径になるので2です。
正三角形の場合は,2辺と言う事になり,辺の長さがルート3ですから3
正方形の場合は,2辺と1つの対角線で,ルート2×2×ルート2で4となります。
このさきもずっと成り立ちます。面白い。簡単。でも説明がねえ・・・。

No.722 楽しい話が  投稿者:moonlight 投稿日:2008/12/21(Sun) 00:10  
たくさんあるでしょう?GoGeometry。
アルキメデスが気になって探している時に見つけて
ずっと観ています。とっても精力的。
あまりまとまっていないけど・・・。
Proposed Problemもそろそろまとめ時なのかも。
再編集してくれるのを愉しみに待つか,
さっさと全部解いてみて,こちらで私的にまとめちゃうか。
幾何好きにはワクワク刺激的です。

No.721 出所は同じ角度の問題  投稿者:FUKUCHAN 投稿日:2008/12/20(Sat) 10:30  

小生も「gogeometry」ドットコムを覗いて見ました。
No.702の問題も出ていましたし、見たことのある問題も結構有りました。

そこで小生もパクリです。

角度を求めて下さい(基本的にNo.702と同じですが、出題の仕方を変えると大分違って見える???)。

No.718 RE:No.717  投稿者:FUKUCHAN 投稿日:2008/12/14(Sun) 11:30  
>65度は頂角50度の二等辺三角形の底角=65+50+65=180...
これは消し忘れ! 但し敢えて下記を修正しませんでした。

No.717 RE:No.716  投稿者:FUKUCHAN 投稿日:2008/12/14(Sun) 11:29  
3点A、B、Dを固定してやると、点Cが何処にあってもx一定!
Cを限りなくAに近づけると・・・(作図問題で極限は使えなかったっけ?)

極限の考えを使わない場合、65度は頂角50度の二等辺三角形の底角=65+50+65=180...
点Cを、一番解き易い位置に移動すれば良い訳か!
と言う事は∠ADCを××度にしたら・・・簡単に出来たけど駄目?

No.716 出所は同じ角度の問題ですが・・・  投稿者:moonlight 投稿日:2008/12/14(Sun) 10:19  

先の問題が解けてから今度はこちらで悩んで?楽しんでいます。


No.713 RE:No.712 追記  投稿者:FUKUCHAN 投稿日:2008/12/06(Sat) 11:17  
エレガントっぽい解答を見付けたと思って作図を始めたら・・・

思い込みが有ったと言うか、CADで作図した為に求めなければいけない角度や長さが「規定値」らしく出てきて、それを使って解答を作ろうとしていた事に気が付きました。

紙と鉛筆でやり直しです!

No.712 RE:No.702 判明!  投稿者:FUKUCHAN 投稿日:2008/12/04(Thu) 20:54  
そうですね!
角度をゼロにすると、120°の補角(って名前だったか)が60°で、正三角形が見付けやすくなるんですね。

ここに気が付けば、角度がゼロでなくても正三角形が見えてきます。

しかし、エレガントな証明がまだ出て来ない⇒思い違いがあるかも...

No.711 No.702 判明!  投稿者:moonlight 投稿日:2008/12/04(Thu) 11:57  
702の謎は判明しました。やはり正三角形が味噌でした。
それにしても見えないものです。
お騒がせしました。

No.710 ん〜  投稿者:moonlight 投稿日:2008/12/04(Thu) 09:21  
極限を考えるなら0でもオッケー?
それより180度も駄目とか?

関数に持っていくと話はまた更にややこしや。

No.709 RE:なかなか面白いでしょ?  投稿者:FUKUCHAN 投稿日:2008/12/03(Wed) 21:33  
>アルファは何でも佳い?

ゼロにすると描けません! 数学的には極限の観念ですね♪
凄いヒント????????????????(?=∞)

No.708 なかなか面白いでしょ?  投稿者:moonlight 投稿日:2008/12/03(Wed) 21:05  
アルファは何でも佳い?ので,
例えば15度ぐらいにすると明々白々。
でもわかんない。何処をどう見ればよいのだろう。
描き方も簡単だけど・・・。これだから目が離せません。

No.707 RE:一週間ほど悶々悶々#2  投稿者:FUKUCHAN 投稿日:2008/12/02(Tue) 21:02  
∠BADが常に30°と言うのは解き方のヒントになるのかなぁ?
しかし、上記の角度はバッドとも読めますねぇ♪

No.706 RE:No.703  投稿者:FUKUCHAN 投稿日:2008/12/02(Tue) 19:34  
moonlightさん、今晩は!

描き方としては、点Pを通り(例えば)下の線と交わる直線を引きます。
交点をQとして、PQを一辺とする相似の三角形を描く事から始めます(相似の三角形の描き方は色々有ると思いますが・・・)。

もう一つは、例えば点Aが点Pと重なるように三角形を移動し、ACやBC(若しくはその延長)と交わる点を使って、相似の三角形を描く等々ですね!

No.705 RE:一週間ほど悶々悶々  投稿者:FUKUCHAN 投稿日:2008/12/02(Tue) 19:28  
30°になる事を、キチンと証明すれば良いんですね♪
時間が出来たら(気が向いたら???)解答用BBSに掲載したいと思います。
もっとも、例によって単純な思い込みがあるかも知れませんので、注意をしないと...

No.704 re:一週間ほど悶々  投稿者:N/T 投稿日:2008/12/02(Tue) 18:31  
これも感覚では判るけど、解けそうで解けない…
No.703 Re:NO.699  投稿者:moonlight 投稿日:2008/12/02(Tue) 16:27  
解答用の方も観ました。
699の図では,三角形のどの頂点も二本の直線上に無いので,
まずは,どちらか一方を直線上に持って行けば佳いのでしょうか・・・。

まだ眺めているだけで,考えてられていません。
702の答えが判る(し,作図も出来る)のだけど,よく判らない問題で悩んでいます。

No.702 一週間ほど悶々  投稿者:moonlight 投稿日:2008/12/02(Tue) 13:47  

如何?


[直接移動] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29]
- 以下のフォームから自分の投稿記事を修正・削除することができます -
処理 記事No パスワード

- Joyful Note -


本音のCAD・CAM http://amaterus.jp/